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Abstract

We propose a theory of “optimal memory management” that unveils causal relationships

between memory systems and the characteristics of the information retrieved. Our model

shows that if the declarative memory is more accurate but also more costly than the

procedural memory, then it is optimal to retrieve exceptional experiences with the former

and average experiences with the latter. The theory provides other testable predictions:

(i) decisions are closer to original experiences when the declarative memory is invoked, and

(ii) the declarative memory is more likely to be invoked when the importance of recalling

information accurately increases.
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1 Introduction

Bounded memory is arguably one of the most important limitations in humans, an aspect

that has received considerable attention from researchers. Formal mathematical models

of limited memory can be found in fields as diverse as statistics (Cover and Hellman,

1970), artificial intelligence (Narendra and Thathachar, 1989), psychology (Anderson and

Milson, 1989) and computation theory (Feder, 1991), just to name a few. There is also

a literature in economics (see e.g., Piccione and Rubinstein (1997), Mullainathan (1998),

Benabou and Tirole (2002), Bernheim and Thomadsen (2005), Frey (2005), Kocer (2012)

and Monte (2014)), although it is fair to say that it has received less attention than other

aspects of bounded rationality.

Bounded memory is multifaceted. In order to concentrate on some aspects, all the

formal models we know have overlooked one important finding in neuroscience: memo-

ries can be encoded by different systems and each system has some special properties.

The goal of this paper is to build the (to our knowledge) first model of bounded memory

in economics or any other science where experiences are optimally encoded by different

systems depending on their characteristics. More precisely, our model unveils causal rela-

tionships between the memory system employed and the type of the information retrieved.

To better understand the building blocks of the theory, we first present a brief overview

of the existing neurophysiological evidence on memory (these findings are well-known in

neuroscience but possibly less familiar for economists).

Memory refers both to the conscious recollection of facts and historic events and also

to the unconscious and automatic retrieval of information necessary to perform some ha-

bitual actions. However, the processes involved in storing, learning and retrieving these

different types of information differ largely. The literature in neuroscience reports find-

ings indicating the existence of different memory systems in the brain (see e.g. Poldrack

and Foerbe (2008) for a review). An accurate classification of memory systems has been

obtained by correlating the types of information memorized with the underlying biolog-

ical mechanisms involved in the memory processes (see e.g. Squire (2004) for a review).

Memory can be broadly classified into two main classes.

Declarative memory refers to the capacity to recollect information in a conscious way.

It is based on the ability to detect and encode what is unique about an event (Ullman,

2004). Learning occurs fast (with few exposures) and the learned material is consciously

known and easily verbalized. Learning is effortful and engages working memory resources

(Craik et al., 1996). The knowledge acquired with the declarative memory system is flexi-

ble and can be used in a variety of contexts, but it also tends to erode. Declarative memory

engages the hippocampus and surrounding structures. These structures are involved in

the formation of memories but also in the ability to retain and recall them (Gabrieli and

Kao, 2007). The lateral Prefrontal cortex (lPFC) is engaged in the memory process of

1



contextual details of an experience. The left dlPFC is activated when memories are formed

while the right dlPFC is activated when memories are retrieved (Kapur et al., 1997) and

these structures are also more active during the encoding of unexpected facts (Fletcher et

al. (2001)). The amygdala is involved in the encoding and retrieval of emotionally charged

memories (Adolphs et al., 1997).

Non-declarative memory refers both to learned skills and habits and perceptual learn-

ing or conditioning. Non-declarative memory detects what is common to several situa-

tions. Learning is gradual and slow, the decision-maker learns through trial-and-error,

and requires feedback. The learned material is also unconscious and difficult to verbalize.

Learning requires effortless attention. Learned knowledge is rigid, used in specific contexts,

and durable. It engages a variety of structures depending on the finer subclassification of

memories. Closest to the specific interest in this article, the part of the non-declarative

memory that refers to skills and habits is placed under the umbrella of procedural memory .

It engages structures like the striatum (Kreitzer, 2009). Also, conditioning is linked to the

amygdala and the cerebellum (see Squire (2004) for a detailed classification).

This classification suggests a tight connection between memory system and type of

information. We can think of the different systems as tools to solve different problems.

For instance, the declarative system helps find a solution to problems like “in which spot

did I park today?” while the procedural system solves best problems like “when I come

to school where do I usually park?”. A summary of the major differences between the

declarative and procedural memory systems is presented in Table 1.

Memory System Declarative Procedural

Characteristics Fast and conscious Slow and unconscious
Flexible and temporary Rigid and durable
Effortful Effortless
Precise Vague

Uses Facts and events Skills and habits
Unique features Common features

Brain areas Medial temporal lobe Basal ganglia
(hippocampus) (striatum)

Table 1. Taxonomy of declarative and procedural memory systems

The relationship between memory systems and types of memories is still imperfectly

understood. Yet, existing studies provide interesting findings. Firstly, memory systems

are substitutable. Bayley et al. (2005) show that subjects with impaired procedural mem-

ory improve over time their performance in the weather prediction task by repeatedly
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exercising their declarative memory, even though this is a paradigmatic example where

procedural memory works best. Also, what is learned depends crucially on which system

is engaged (Dagher et al., 2001). Overall, systems are tailored to certain types of memories

and act as ‘imperfect substitutes’ (Poldrack and Packard, 2003). Secondly, systems are

selected depending on task demands. In particular, there is evidence that neurobiological

mechanisms are in place to make sure behavior is optimized, that is, it employs the memory

system most suitable to the experience (Poldrack et al. (2001); Foerde et al. (2006)).

Substitutability and optimization are key properties in decision making. The evidence

reviewed here suggests that the resort to a given memory system is an endogenous deci-

sion: (i) several systems can be employed to retrieve memories, (ii) different systems have

different properties which make them suitable for the encoding and retrieval of different

experiences, and (iii) the choice of one system over another will be the result of an op-

timization process. Starting from these premises, the purpose of this study is to build

a theory of optimal memory management, that is, one that predicts the choice between

competing memory systems as a function of the experience to memorize.

Combining the findings reported above, we build a simple model in which a decision-

maker (hereafter DM) learns a piece of information relevant for future choices. DM has

imperfect memory, so the exact information received may not be correctly recalled at

the time of the future decision. The information is stored and retrieved using either

the declarative memory system or the procedural memory system. We work under the

hypothesis that these systems differ in their accuracy and cost. Accuracy corresponds

to the degree to which DM can recover the precise experience, while cost refers to the

attentional resources needed to encode and retrieve the information. As summarized

in the second row of Table 1, the declarative memory system produces more accurate

representations of the experience but is also more costly than the procedural memory

system because it requires more attention to process contextual and emotional information

(Craik et al., 1996).1 We then show that some of the situations emphasized in the literature

where different systems are employed (the third row of Table 1) are precisely the ones

predicted by our theory under an optimal memory management strategy.

2 A simple model of memory retrieval

To formalize our thought experiment, we consider a four-stage decision-making problem.

In stage 1, DM acquires information about the state of the world. Let x ∈ R be the

state learned by the individual, and denote by X the real-valued random variable from

1Although these systems differ in many other respects as well and some other systems are also at play
in the storing and retrieval of memories, our theory focuses exclusively on those two characteristics in order
to better assess their impact on behavior.

3



which x is drawn. We assume that X follows a normal distribution. Formally:

X ∼ N
(
µ, 1p

)
,

where µ is the mean and p the precision (inverse of variance) of the random variable X.

In stage 2, a memory about the state is formed. DM can invoke the declarative memory

system (i = D) or the procedural memory system (i = P ). This choice impacts future

memory recollections.

In stage 3, the state is noisily recollected. If memory system i (∈ {D,P}) was invoked

during the encoding phase, the individual retrieves the following signal si correlated with

the true state x:

si = x+ ui where ui ∼ N
(

0, 1
hi

)
.

The noise ui follows a normal distribution with mean 0 and precision hi. In expectation,

the signal is correct E(si) = x. In order to capture the greater accuracy of information

retrieval under the declarative system than under the procedural system, we assume that

hD > hP (notice that hi = +∞ implies perfect recollection of the state whereas hi = 0

implies no recollection whatsoever). Also, invoking memory system i has a cost ci. Fol-

lowing the evidence previously described, we assume that the declarative system involves

a higher cost than the procedural system, namely cD > cP .

In stage 4, DM takes an action a and his payoff depends on the congruence between

the action and the state. For simplicity, we assume that the payoff l(a, x) is given by a

standard quadratic utility loss:

l(a, x) = −β (a− x)2

with β > 0. According to this formulation, if the state x is recalled with exactitude, the

individual’s optimal action is:

ã(x) = arg max
a

l(a, x) ⇒ ã(x) = x.

Deviations from ã(x) imply a loss which is increasing in β. The parameter β thus represents

the importance of the decision or the sensitivity of DM to losses.

A simple example to illustrate this sequence of events is that of a DM recalling how

much he liked a product before purchasing it again. His experience in stage 1 reveals the

optimal quantity he should purchase (the state, x). In stage 3, he forms a recollection of

the experience (the signal, si) but it will be distorted due to imperfect memory (the noise,

ui). Based on such recollection, DM in stage 4 may decide to purchase too much or too

little of the product (the action, a), that is, a ≷ x. Both deviations imply a utility loss.
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Notice that the declarative system is tailored to answer the question “how much do I

like this particular product?”. If invoked, it is likely that DM will recall a signal sD close

to the experience x and answer the question correctly. However, precision comes at a cost,

and working memory is highly involved in the process. On the other hand, the procedural

system is designed to answer the more general question “how much do I like this type

of products?”. If it is engaged, the memory recollection sP is likely to be farther away

from the experience x, as DM will miss specific features of the product and focus instead

on general characteristics he typically likes. The benefit, however, is that this memory

retrieval requires little effort.

The decision process is summarized by the following timeline.

-

time

uuExperience (x)

1

uSignal (si)

3

?

Memory management
(i ∈ {D,P})

2

u ?

Decision
(a)

4

Figure 1. Timing

The problem is solved by backward induction. If memory system i is chosen in stage

2 and signal si is retrieved in stage 3, then DM in stage 4 should choose the action that

maximizes his expected payoff:

â(si) = arg max
a
−
∫
x
β (a− x)2 dFi(x | si)

where Fi(x | si) is the revised distribution of the state x given the memory system i, the

signal retrieved si and the prior distribution of states X. Since the objective function is

quadratic, the optimal action satisfies the first-order condition, namely:

â(si) = Ei[X | si],

where Ei is the expectation operator. In words, DM’s optimal action is simply his expected

belief about the state given the signal retrieved.

In stage 2, after observing the state x, DM knows that if system i is invoked, he will

obtain in stage 3 a signal si drawn from Gi(si |x). Given that signal, he will undertake in

stage 4 the action Ei[X | si]. Therefore, DM’s expected payoff in stage 2 is:

Vi(x) = −
∫
si

β (Ei[X | si]− x)2 dGi(si |x)− ci
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The normality assumptions of state and signal imply that:

si |x ∼ N
(
x, 1

hi

)
and X | si ∼ N

(
p

p+hi
µ+ hi

p+hi
si,

1
p+hi

)
Substituting in the previous equation, we get:

Vi(x) = − βhi
(p+ hi)2

− βp2

(p+ hi)2
(x− µ)2 − ci, i ∈ {D,P} (1)

Finally, in stage 2 it is optimal to employ the memory system i that achieves the highest

expected payoff, namely:

i∗ = arg max
i∈{D,P}

Vi(x)

3 Results

We can now review the properties of DM’s decision in stage 4 given the memory system

invoked, as well as DM’s efficient memory management strategy in stage 2.

Result 1 DM’s optimal action in stage 4 moves in the direction of the signal. It is close

to the prior when the memory system employed is very imprecise (procedural) and close

to the signal when the memory system employed is very precise (declarative).

Under either system, the posterior belief about the state, and therefore about the

optimal action to be taken, is a convex combination of prior µ and signal si. Formally,

â(si) = p
p+hi

µ + hi
p+hi

si. A signal below the prior indicates the state is likely to be below

µ, hence an optimal action â(si) ∈ (si, µ). A signal above the prior indicates the state

is likely to be above µ, hence an optimal action â(si) ∈ (µ, si). As the precision of the

memory system increases, the signal si becomes more informative and reliable. DM is

then willing to put a higher weight on the signal and a lower weight on the prior.

Result 1 can be used to predict the direction of the choices under either memory

system. Because of imperfect retrieval of the experience, those choices will imply some

expected losses and an efficient memory management opts for the system yielding higher

expected utility. We now present the main result of the paper, namely the characterization

of the optimal choice of system.

Result 2 It is optimal to retrieve information with the declarative memory system when

the state is extreme and with the procedural memory system when the state is intermediate.

Formally, there exists a cutoff x∗ ≥ 0 such that VP (x) > VD(x) if x ∈ (µ − x∗, µ +

x∗) and VD(x) > VP (x) if x 6∈ (µ − x∗, µ + x∗).2 The result comes from equation (1)

2For some parameter configurations (hD, hP , cD, cP ), we have VD(x) > VP (x) for all x.
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and has an intuitive explanation. Since the information retrieved with the declarative

system is precise, it puts a higher weight on the signal (thus a lower weight on the prior)

compared to what the procedural system would achieve. When the state is close to the

prior µ, the utility loss of remembering it imperfectly is, on average, smaller the higher

the weight put on the prior in forming the posterior. Hence, the procedural system is

preferred. Conversely, when the state is far away from µ, it is on average better to put a

low weight on the prior and a high weight on the signal. Here the declarative system is

preferred. Stated differently, because the declarative system encodes and retrieves more

accurate information but at a higher cost, it is efficient to resort to that channel only

when the true state departs substantially from the prior belief, and is therefore worth

remembering accurately. Overall the declarative system is used only when states are

extreme. This optimal memory management policy is illustrated in Figure 2. The policy

can be implemented by a simple algorithm in which the distance between the true state

and the prior belief is first established, and this determines which system should encode

the memory about the state.

- Experience x
µ− x∗ µ µ+ x∗

Procedural

Declarative Declarative

Figure 2. Optimal memory management

4 Implications of the theory

Our previous results establish that efficient memory management requires to use the declar-

ative system when memories are worth remembering with precision, while the others should

be managed by the procedural system. This has a series of implications.

1. Remembering events differently as a function of how they strike us.

According to our theory, DM will remember with accuracy an extremely good or bad

experience with a product because it will engage the declarative memory system. How-

ever, an average experience will not stand out as it will engage the procedural memory

system. At the time of retrieving the information, the exact experience will be confounded

with other average experiences. First, this result suggests more generally that we do not

remember all events similarly and we use more memory resources to remember non ordi-

nary events (such as emotional memories or flashbulb memories). This description is in

line with the neuroscience evidence suggesting that the declarative system is invoked to
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remember striking, episodic events whereas the procedural system is used to remember

general aspects and recurrent patterns of tasks (see section 1). Second, and more impor-

tantly, our paper argues that these are not exogenous properties of the memory systems.

Instead, they are the result of an optimal memory management policy. So, for example,

we optimally remember the details of a clever proof, the ingredients of an awesome desert,

and the moment where the music conductor made a mistake. And at the same time, we

optimally keep only a vague idea of what was in a moderately interesting paper, in an

uninspiring meal and in an average concert. Overall, our model suggests that memory

accuracy is due to the endogenous selection of different systems to retrieve average vs.

extreme experiences.

Implication 1 Efficient memory management requires striking events to be retrieved with

the declarative system and non striking events to be retrieved with the procedural system.

Striking events are then vividly remembered while non striking events remain blurry.

2. Memory impairment and biased behavior.

Our theory builds on the premise that the declarative and procedural systems are sub-

stitutable, an idea that has received experimental support in neuroscience (see section

1). Sometimes, however, substitution is impossible. Suppose for instance that one mem-

ory system is not functioning properly (e.g., due to a lesion or task overload), in which

case memories are routed inefficiently to the only available system. When the declarative

system is used, DM’s behavior tends to hinge closer to the signal compared to when the

procedural system is used. In both cases, experiences x < µ trigger actions that are, on

average, below µ and experiences x > µ trigger actions that are, on average, above µ.

However, when comparing the behavior of subjects with different impairments, we notice

a systematic bias in decision-making. Formally, the decision taken on average is:

E[â(si)] =
p

p+ hi
µ+

hi
p+ hi

x

and the bias of the expected decision with respect to the original experience is:

E[â(si)]− x =
p

p+ hi
(µ− x)

As the precision of the memory increases, the average decision comes closer to the original

experience. Formally, |E[â(si)]− x| is decreasing in hi. Therefore, subjects exhibiting an

impaired procedural memory and resorting exclusively to the declarative memory (the high

precision system) are more likely to behave in accordance with the original experience.

By contrast, subjects with an impaired declarative memory will tend to depart more

from the original experience. This implication indicates that subjects with deficits of the

hippocampus and related structures should perform poorly at remembering “whether they
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liked the product”. This prediction is in line with experimental evidence (Eichenbaum et

al., 1990). By contrast, subjects with a deficit of the striatum should recall all types of

experiences equally well. Overall, in the limit case where a system has become infinitely

costly to use (a simple way of modeling an impairment), memories will be encoded and

retrieved inefficiently and behavior will be systematically biased.

Implication 2 DM with impairment of the procedural system tends to form very precise

memories and act upon a precise recollection. Behavior over time responds closely to past

experiences. By contrast, DM with impairment of the declarative system tends to form very

vague memories of events and act upon the prior. Behavior over time does not respond to

experiences.

3. Environmental factors and memory-based behavior.

Naturally, even in the absence of impairments, we do not always recall similar events

equally well. The day-to-day demands imposed on systems make them relatively more or

less costly to use. Changes in our environment may act as triggers to increase the cost

of storing memories or to make us remember less accurately. For instance, it has been

shown that psychological stress affects hippocampal functions and declarative memory

performance (Lupien et al. (1997), Henckens et al. (2009)). Not surprisingly, dx∗/dcD > 0

and dx∗/dcP < 0 and, for precision values large enough, dx∗/dhD < 0 and dh∗/dhP > 0

(a sufficient condition is hP > p). A system is relatively less likely to be employed the

higher its associated cost and the smaller its accuracy. Therefore, under stress, when

normal hippocampal functions are disrupted, it is optimal to form new memories through

the procedural system even when events are striking. This obviously results in imperfect

memories.

Implication 3 Day-to-day memory formation is affected by the relative demands imposed

on memory systems as we substitute them to use the relatively more efficient one.

4. Memory and incentives.

Some events are intrinsically more important to us than others. Recall that β reflects the

sensitivity to losses, with a larger β implying a steeper loss function. When β increases,

it becomes more valuable to recall information accurately. Therefore, DM should use the

declarative system more often (∂x∗/∂β < 0). Thus, according to the model, memories

are shaped by incentives. Moreover, from Implication 3, we know that as the cost of

one memory system increases, the likelihood of a substitution with the other system also

increases. Interestingly, this substitution effect is as small as the cost of suboptimal choices

increases. That is, subjects who lose more from imperfect recall are also less sensitive to

variations in the cost of a system: they tend to switch less often when the system becomes

more effortful.
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Implication 4 When suboptimal actions are more costly, DM resorts less often to the

procedural system. Furthermore, he is less likely to substitute memory systems if their

relative cost change.

5. Memorizing unexpected events and learning new material.

Sometimes, we face events for which the best prior we can formulate is flat. This occurs in

the case of new events or unpredictable and novel situations. In those cases, the variance

is large (p is small) and DM relies almost exclusively on the signal, that is, the decision is

close to si. Recall that the signal is closer to the experience under the declarative system

but it is also more costly. Thus, when p is small, it is optimal to choose the system that

offers the best trade-off between cost and precision, independently of the realization of x.

Some DM will resort to the procedural system while another will invoke the declarative

system. However, the recording pattern for a given DM is predicted to be the same across

events (product A vs. product B) or as a function of the realized state (I liked it a lot vs.

I liked it moderately). Interestingly, this result suggests the existence of different learning

patterns. We should expect a DM who resorts to the procedural system to learn about

unpredictable situations very slowly (as a result of not remembering well). By contrast, a

DM who resorts to the declarative system should learn very quickly if exposed repeatedly

to novel situations. In the same lines, consider a child who learns how to read and has

no prior knowledge of the alphabet. When exposed to a letter for the first time, he

may forget it, making mistakes repeatedly. The child is (possibly optimally) using the

low-cost procedural memory and learns more slowly than a child who uses the (effortful)

declarative memory. Even though our model is not designed to make predictions about

learning (which would require a dynamic framework), it points to the existence of a causal

relationship between the ability to learn/memorize and the intrinsic features of our two

memory systems.

Implication 5 When our beliefs are flat, either the procedural system is always used or

the declarative system is always used.

5 Conclusion and future directions

In this article we have incorporated the evidence from neuroscience regarding the existence

of multiple memory systems and built a theory able to unveil causal relationships between

memory systems and the characteristics of the information retrieved. The theory argues

that such causal relationships emerge as the result of an optimal memory management

policy. The type of information memorized by each system is the solution to a cost-benefit

trade-off between effort required and precision obtained of memories. The theory also

provides a coherent and unified framework to understand behavioral biases attributable

to imperfect memory.

10



Despite the significant evidence in favor of multiple memory systems reviewed in the

introduction, there is still a certain resistance to the concept (see e.g. Nosofsky and Zaki

(1998) and Palmeri and Flanery (1999)). Sherry and Schacter (1987) propose an inter-

esting evolutionary theory, where the development of multiple memory systems is driven

by the incompatible needs to learn common features across events vs. learning specific

features of each event. The argument is attractive but lacks a formal mathematical frame-

work. Developing rigorous models that capture the evolutionary value of internal conflicts

(as, for example, Samuelson and Swinkels (2006) or Bisin and Iantchev (2010) do in other

contexts) could help clarify the relative advantages of one vs. multiple memory systems.

Traditional economic theories of learning could benefit from modeling biological mech-

anisms to rationalize biases in beliefs and behavior (Brocas and Carrillo, 2012). For

instance, the existence of multiple memory systems is likely impacting belief formation

as a function of the environment in which learning takes place. In rapidly changing envi-

ronments, where information is highly valuable but becomes obsolete quickly, individuals

should optimally employ the costly but accurate declarative memory system. By contrast,

in stable settings it might be preferable to save on cost and invoke the imprecise procedural

system, hence reducing the speed of learning. Furthermore, given rare and striking events

are more often remembered, predictions regarding future similar events may be more ac-

curate compared to predictions regarding more common events. This could explain why

we act as if we overweight low probability (rare) events compared to others. Also, events

that are rare at a point in time but become common after sufficient exposure should be

memorized differentially over time, leading to biases in the decisions we make and that

are usually thought to be changes in utility. More generally, understanding better how we

encode, memorize and retrieve the information we gather around us should shed light on

what we believe and how we behave given these memories.

Finally, the study also provides an example of the mirror cross-fertilization possibilities,

namely how the methodology in microeconomic theory can help understand biological

phenomena and offer new testable predictions. Yet, the theory presented here abstracts

from important considerations. Of special interest is the evidence supporting the idea

that different memory systems impose ‘externalities’ on each other. For instance, Gold

(2004) shows that memory systems may compete or cooperate with each other in certain

situations. In future work, it would be interesting to theoretical model and empirically

test such interactions.
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Appendix

Proof of Implication 3. At equilibrium VP (µ− x∗) = VD(µ− x∗). Differentiating this

expression with respect to cP we have,

−
(∂VP
∂x

(µ− x∗)− ∂VD
∂x

(µ− x∗)
)∂x∗
∂cP

= −∂VP
∂cP

(µ− x∗).

We also have ∂VP
∂x (µ−x∗)− ∂VD

∂x (µ−x∗) ∝ hD−hP > 0 and ∂VP
∂cP

(µ−x∗) = −1, therefore,
∂x∗

∂cP
< 0. As cP increases, µ− x∗ increases and µ+ x∗ decreases: the region in which DM

uses the procedural memory shrinks. Similarly,

−
(∂VP
∂x

(µ− x∗)− ∂VD
∂x

(µ− x∗)
) ∂x∗
∂cD

=
∂VD
∂cD

(µ− x∗)

and given ∂VD
∂cD

(µ− x∗) = 1, we have ∂x∗

∂cD
> 0. With respect to precisions, we have

−
(∂VP
∂x

(µ− x∗)− ∂VD
∂x

(µ− x∗)
) ∂x∗
∂hP

= −∂VP
∂hP

(µ− x∗),

−
(∂VP
∂x

(µ− x∗)− ∂VD
∂x

(µ− x∗)
) ∂x∗
∂hD

=
∂VD
∂hD

(µ− x∗)

Note that ∂Vi
∂hi

(µ− x∗) ∝ hi − p+ p2x∗ > 0 if hi > p in which case ∂x∗

∂hP
> 0 and ∂x∗

∂hD
< 0.

Proof of Implication 4. Differentiating the equilibrium condition VP (µ−x∗) = VD(µ−
x∗) with respect to β we have,

−
(∂VP
∂x

(µ− x∗)− ∂VD
∂x

(µ− x∗)
)∂x∗
∂β

= −
(∂VP
∂β

(µ− x∗)− ∂VD
∂β

(µ− x∗)
)

At equilibrium, we have ∂VP
∂β (µ − x∗) − ∂VD

∂β (µ − x∗) = (cP − cD)/β < 0 and therefore
∂x∗

∂β < 0. Differentiating a second time with respect to cD:(∂2VP
∂x2

(µ− x∗)− ∂2VD
∂x2

(µ− x∗)
)∂x∗
∂β

∂x∗

∂cD
− 1

β
=
(∂VP
∂x

(µ− x∗)− ∂VD
∂x

(µ− x∗)
) ∂2x∗

∂β∂cD

yielding ∂2x∗

∂β∂cD
< 0. Differentiating now a second time with respect to cP :(∂2VP

∂x2
(µ− x∗)− ∂2VD

∂x2
(µ− x∗)

)∂x∗
∂β

∂x∗

∂cP
+

1

β
=
(∂VP
∂x

(µ− x∗)− ∂VD
∂x

(µ− x∗)
) ∂2x∗

∂β∂cP

yielding ∂2x∗

∂β∂cP
> 0.

Proof of Implication 5. When p→ 0, we have Vi(x) = − β
hi
− ci and VD(x)− VP (x) =

− β
hDhP

(hP − hD) + cP − cD, which is independent of x.
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